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TECHNICAL MEMORANDUM

MEASUREMENT OF PLASTIC STRESS AND STRAIN
FOR ANALYTICAL METHOD VERIFICATION

(MSFC Center Director’s Discretionary Fund Final Report, Project No. 93–08)

I.  INTRODUCTION

Currently on the Space Shuttle Main Engine (SSME) and Alternate Turbopump Development
(ATD) programs, a great deal of effort is spent calculating and predicting plastic strains, residual stresses,
and fatigue life after plastic deformation. These conditions result from welding, bolt overtorquing, dimen-
sional mismatches causing assembly stresses, anomalous loadings, thermal loadings, and nominal hot
fire. The validity of analytical solutions to these problems is often in question, particularly finite element
models and associated material models.

II.  OBJECTIVE

The objective of this proposal is to model and test a common engine material to develop a set
of test data and specific material properties to be input to analytical solution routines as a verification
method. This would provide a fixed reference to apply to new analytical techniques and computer rou-
tines that become available. This will also provide valuable hands-on experience with experimental stress
analysis techniques not commonly used at Marshall Space Flight Center (MSFC) to measure plastic
effects, and experience with matching nonlinear analysis with measured nonlinear data. It is not possible
to measure plastic strains on most structures due to complex engine loading and geometry, so having
controlled tests and measurements would be invaluable for validating analytical techniques.

III.  APPROACH

The approach for this Center Director’s Discretionary Fund (CDDF) was altered from the use of
laboratory specimens when an impeller failure in an AT high-pressure fuel turbo pump (HPFTP) for the
SSME provided the opportunity to model and measure plastic stress and strain directly on actual engine
hardware.
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IV.  IMPELLER FAILURE INTRODUCTION

The AT/HPFTP is being developed by Pratt and Whitney (PW) for NASA MSFC, and will replace
the current HPFTP (built by Rocketdyne) on the SSME as part of a block change upgrade with the first
flight scheduled for late 1999. The AT/HPFTP incorporates new bearing and turbine material technologies
along with improved manufacturing techniques, developed since the original HPFTP’s design in the early
1970’s. The HPFTP is a turbine and pump on a single shaft that operates at 37,000 rpm, providing the
SSME with 68 kg/sec (150 lb/sec) of liquid hydrogen at 41.37 MPa (6,000 psia) and 53 K (96 R) when
the engine is at 109-percent rated power level (RPL).

The AT/HPFTP is designed to provide substantially longer life between overhauls and minimal
inspection between flights. The design requirements are 60 flight equivalents (engines are tested for a
full-duration mission on the ground before acceptance for flight) with an analytical safety factor of 4.
The current pump requires detailed inspections between flights and complete overhaul after only 5,000
seconds of operation.

An early development version of the HPFTP experienced a failure in the pump’s third impeller
shroud and third impeller first splitter blade. Pieces of the titanium impeller were liberated and subse-
quently lodged downstream in the flow path. The failure occurred in a low time unit with only
10 starts and 1,991 sec of operational experience. A fuel pump failure can cause a catastrophic failure of
the engine system since it will leave the engine to run oxygen-rich. In the moments it takes the engine
system to detect and react to the pump failure by shutting down the engine, the oxygen-rich condition can
raise temperatures and pressures beyond the combustion limits of the materials in the engine.

An investigation team was tasked with explaining how the failure initiated, propagated to part
liberation, and how to avoid this in production hardware. Due to the severe environment and tight space
limitations inside the turbopump, direct measurements of the stresses and strains on the impeller during
operation were not possible. It was also not possible to economically duplicate the impeller boundary
conditions in a laboratory rig, so only postengine test-run hardware was available for examination. Re-
sidual stress measurements provided confirmation of analytical predictions of the most probable failure
mode.

V.  HARDWARE DESCRIPTION

The failed impeller is the third stage of the pump side of the AT/HPFTP (see cross section in fig. 1
for location). It is machined from an A110 extra-low interstitial (ELI) titanium forging. Tungsten carbide
coatings were applied to the rub stop surfaces to protect the titanium from direct contact with stelite
surfaces on the mating face seals. An inlet and side view of the impeller are shown in figure 2. Identified
in the figure are the posttest crack locations and the location of the rub stops. The cracks in the shroud
initiated at the outer diameter corner of the rub stop and progressed up to 22 mm (0.85 in.).
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Production PIN: 4701097
Assy. Find No.: 33
Material: PWA-SP 1240 Ti Alloy

Fracture Critical: Yes
Rotating Part: Yes
Pressure Vessel: No

2nd STAGE IMPELLER

Production PIN: 4701264
Assy. Find No.: 32
Material: PWA-SP 1240 Ti Alloy

Fracture Critical: Yes
Rotating Part: Yes
Pressure Vessel: No

1st STAGE IMPELLER

Production PIN: 4701088,4701099
Assy. Find No.: 317, 35
Material: AM3 4966 Ti Alloy

Fracture Critical: No
Rotating Part: Yes
Pressure Vessel: No

ROTOR BALANCE RINGS

Production PIN: 4700561
Assy. Find No.: 34
Material: PWA–SP 1340 TI Alloy

Fracture Critical: Yes
Rotating Part: Yes
Pressure Vessel: No

3rd STAGE IMPELLER

Splines

Figure 1. Cross section of the Pratt and Whitney AT/HPFTP pump end
showing the impeller locations.
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Figure 2. Third impeller end and section views showing crack locations.

During operation of the pump, the upstream and downstream faces of the third impeller are used
as thrust pistons to provide axial thrust balance. This axially positions the shaft and reacts the turbine
axial blowdown loads. During engine start and shutdown, the thrust balance system momentarily lacks
the hydrogen pressure to axially position the shaft. During these short-duration transients, <0.2 sec, the
axial loads are reacted through the rub stops.
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VI.  FAILURE INVESTIGATION

The failure investigation team, as reported by reference 1, identified the following scenario as
most probable:

• The third impeller pump side rub stop contacts the stelite stationary seal during start transients.
Stelite is displaced at the outer diameter which aggravates rub damage to the impeller rub stop.

• Frictional heating during rub yields the titanium in compression.

• After the pump speed builds, the thrust balance system lifts the rub stop, quenching the hot
titanium in liquid hydrogen. This causes high tensile stresses and initiates the crack.

• The crack is driven to critical length by repeated start/rub/quench cycles.

• When the flaw has grown to critical length, the shroud fractures to the final crack length.

• The loss of hoop continuity at the shroud inlet raises the first splitter blade stresses
(>1,792 MPa, 260 KSI).

• The blade crack initiates and grows to separate the titanium pieces found downstream in the
engine system.

Microstructural evaluation of the hardware2 showed that the titanium material at the rub stop had
experienced temperatures >1,311 K (1,900 ºF) evidenced by changes in the phases of the microstructure.
The temperatures were below <1,844 K (2,860 ºF) since melting of the titanium was not observed. The
tungsten carbide coating was heat-checked and missing small pieces.

Thermal analysis of the frictional heating by Goode3 predicted peak titanium temperatures
of 1,667 K (2,540 ºF) during the rub event. The temperature profile with depth from the surface was
steep, decaying to 138 K (–210 ºF) 1.27 mm (0.05 in.) below the surface.

A finite element model (FEM) of the local region of the rub stop was run using nonlinear
material properties and the thermal profiles generated by Goode3. The resulting rub stop surface plastic
stress versus strain cycle is shown in figure 3. The model was run for two cycles, which showed the
stress strain hysteresis loop to be established. Note that the first cycle start point is at zero stress and
strain, and during the peak rub, a 1.4-percent compressive strain is developed. The hoop stress is rather
low since the titanium’s Young’s modulus has dropped, due to the high local temperature. At steady state
operation, a very high hoop stress is present since the compressive yielded titanium is now being cooled
by the hydrogen. The end of the first cycle is when the engine is shut down and the impeller returns to
room temperature; this is also the starting point for the second cycle. Note the high tensile residual hoop
stress of 620 MPa (90 KSI). This residual stress is localized on the surface of the rub stop to a depth of
0.8 mm (0.03 in.), after which it decays rapidly with increasing depth. This corresponds to the depth of
the heat-damaged region.
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VII.  EXPERIMENTAL RESULTS

To provide an anchor to all the assumptions used in the analysis of the pump side rub stop, a
measurement of the residual stress was made. The method selected was the measurement of residual
stress by the hole-drilling strain-gauge method. Due to the predicted shallow depth of the residual stress,
the smallest diameter hole, 0.8 mm (0.031 in.), was selected so the depth drilled would be within the
damage zone. This would avoid drilling into regions with large stress gradients which would complicate
interpretation of the data.

A Measurements Group RS–200 optical milling guide, outfitted with the air turbine and a 0.79
mm (0.031 in.) carbide-tipped cutter, was used to drill the holes. Micro Measurements EA–06–031RE–
120 hole drilling residual strain gauges were mounted on the rub stop face. This gauge is specified for
the cutter used, and also fits within the narrow width of the rub stop, 6.35 mm (0.25 in.). These gauges
are special three-element rosettes with 0.79 mm (0.031 in.) gauge lengths on a grid centerline diameter
of 2.56 mm (0.101 in.), about where the hole center will be drilled.

Figure 3. Results from nonlinear finite element analysis showing
stress-strain hysteresis loop in AT/HPTFP  third impeller
pump side rub stop.
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The tungsten carbide coating is only a few tenths of a millimeter thick and was etched off before
gauge application, since it was in poor condition and is difficult to drill through. Due to the crazed and
spalled character of the remaining tungsten carbide coating, its removal would have no effect on the
measurement of residual stress in the titanium. The specimen tested was a wedge cut from the failed
impeller. Since the residual stress is local to the surface and reacted by the bulk of material beneath it,
the loss of hoop continuity in the specimen is considered to have little effect. Additionally, the cracks
in the shroud had effectively broken the hoop continuity. A gauge was also mounted on the side of the
cut face of the rub stop to sample the residual stress field behind the plastic region.

The holes were drilled following the Measurements Group procedures,4 and the data reduced,
following Measurements Group and ASTM guidelines in references 4 and 5. Table 1 shows the
experimental results. The equivalent uniform stress is defined in reference 4 as that stress magnitude
which, if uniformly distributed, would produce the same total relieved strain, at any depth, as measured
during hole drilling. The FEM-calculated residual stress for the pump rub stop is 620 MPa (90 KSI).

Table 1.  Gauge locations and maximum equivalent stresses measured.

Gauge Location Max. Equivalent Uniform Stress
  MPa (KSI)

Pump rub stop (99.6) Hoop component

Pump rub stop (53.7) Hoop component

Cut face of rub stop (–12.6)  Maximum

Turbine rub stop (41.6) Hoop component
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VIII.  CONCLUSIONS

The experimental data from the residual stress measurement compared favorably with the
analytical predictions. This confirmed that redesigning the thrust balance system to accommodate the
transient engine start and shutdown conditions without rub was the proper corrective action. The
transient axial loads are now reacted in the pump end ball bearing at start and a separate IN 100 rub ring
at shutdown. Subsequent pump builds have demonstrated the redesign’s effectiveness at eliminating the
frictional heating-induced cracking.
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February 1999 Technical Memorandum

The analytical prediction of stress, strain, and fatigue life at locations experiencing local 
plasticity is full of uncertainties. Much of this uncertainity arises from the material models and 
their use in the numerical techniques used to solve plasticity problems. Experimental measurements 
of actual plastic strains would allow the validity of these models and solutions to be tested. This 
memorandum describes how experimental plastic residual strain measurements were used to verify 
the results of a thermally induced plastic fatigue failure analysis of a space shuttle main engine fuel 
pump component.
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